Epithelial Ion Transport Defects in Pancreatitis: establishment of an organoid model

No registrations found.

Ethical review	Positive opinion
Status	Pending
Health condition type	-
Study type	Observational non invasive

Summary

ID

NL-OMON22666

Source NTR

Brief title C-PIE

Health condition

Pancreatitis

Sponsors and support

Primary sponsor: Erasmus University Medical Center Source(s) of monetary or material Support: Investigator initiated

Intervention

Outcome measures

Primary outcome

The ability to culture PDEC organoids from pancreatic duct biopsies.

Secondary outcome

1 - Epithelial Ion Transport Defects in Pancreatitis: establishment of an organoid m ... 4-05-2025

- PDEC organoid characteristics (cellular and molecular composition)
- Ability to grow PDEC monolayers
- Ion transport (chloride and bicarbonate) in PDEC monolayers
- Ion transport (chloride and bicarbonate) in duodenal monolayers
- Carrier status for pancreatitis-related mutations

Study description

Background summary

Pancreatitis is a common cause of hospitalization, with no specific therapy available other than supportive care. Recent evidence indicates that the loss of electrolyte and fluid secretion by pancreatic ductal epithelial cells (PDECs) is a key factor in the etiology of pancreatitis. In particular, dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) has been associated with pancreatitis. We hypothesize that organoids can be cultured from pancreatic ductal biopsies, obtained from chronic pancreatitis patients, to study electrolyte and fluid secretion. The potential role of ion transport abnormalities in the etiology of pancreatitis will be investigated in pancreatic and intestinal (duodenal) organoids, the latter an established model to study CFTR function.

Study objective

Organoids can be cultured from pancreatic ductal biopsies, obtained from chronic pancreatitis patients, to study electrolyte and fluid secretion.

Study design

Collection will be performed during pancreatoscopy.

Contacts

Public Erasmus Medical Center Rotterdam Dora Angyal

+31641126920 Scientific Erasmus Medical Center Rotterdam Dora Angyal

+31641126920

2 - Epithelial Ion Transport Defects in Pancreatitis: establishment of an organoid m ... 4-05-2025

Eligibility criteria

Inclusion criteria

All patients undergoing pancreatoscopy within the framework of regular diagnostics or treatment.

Exclusion criteria

A potential subject that is younger than 18 years old will be excluded from participation in this study.

Study design

Design

Study type:	Observational non invasive
Intervention model:	Other
Allocation:	Non controlled trial
Masking:	Open (masking not used)
Control:	N/A , unknown

Recruitment

NL	
Recruitment status:	Pending
Start date (anticipated):	01-11-2021
Enrollment:	9
Туре:	Anticipated

IPD sharing statement

Plan to share IPD: Undecided

3 - Epithelial Ion Transport Defects in Pancreatitis: establishment of an organoid m ... 4-05-2025

Ethics review

Positive opinion Date: Application type:

06-10-2021 First submission

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register	ID
NTR-new	NL9772
Other	METC Erasmus MC : MEC-2021-0737

Study results